Analog Signal Processing (EE60032),

Department of Electrical Engineering, Indian Institute of Technology, Kharagpur

Tutorial Module 1: Signal Processing Using Operational Amplifier

Faculty: Ashis Maity

Session: Autumn 2019

• Amplifier with different non-idealities

1. Design an inverting amplifier for a nominal gain of 4, a gain error of 0.1% and an input
impedance of 10 kΩ.[Ans. $R_2 = 40$ kΩ, $A_{ol} = 5005$]

2. Design an inverting amplifier as shown in the figure 2 to get a dc gain of -10 and an input impedance of 10 M Ω . Calculate R_t , R_s and R_1 . [Ans. $R_1 = 10 \text{ M}\Omega$, $R_t = 47 \text{ k}\Omega$, $R_s = 22 \Omega$]

Figure 2

Figure 3

- 3. For the non-inverting amplifier as shown in the figure 3, $R_1 = 1 \text{ K}\Omega$, $R_f = 10 \text{ K}\Omega$.
 - a) Calculate the maximum output offset voltage due to V_{ios} and I_B . Assume the op-amp has V_{ios} = 10 mV, I_B = 300 nA and I_{os} = 50 nA.
 - b) Calculate the value of R_{comp} needed to reduce the effect of I_B .
 - c) Calculate the maximum output offset voltage if R_{comp} as calculated in (b) is connected in the circuit.

[Ans. a) 113 mV, b) 0.9 kΩ, c) 110.5 mV]

4. In an inverting amplifier R_1 = 100 K Ω , R_f = 10 M Ω .

- a) Calculate maximum output offset voltage caused by input offset voltage V_{ios} ;
- b) Calculate maximum output offset voltage caused by input bias current I_B ; Where V_{ios} = 6 mV and I_B = 500 nA.

<u>Adder/Subtractor:</u>

- 5. Design a circuit which can generate an output voltage $v_0=-2(3v_1+4v_2+2v_3)$, where v_1 , v_2 and v_3 are the input voltages.
- 6. Design an adder circuit using op-amps to get $v_0 = -(0.1v_1+v_2+10v_3)$, where v_1 , v_2 and v_3 are the inputs.
- 7. Find V_o in figure 4.

[Ans. 6.568 V]

- 8. Show that $v_0 = a_1v_1 + a_2v_2 + a_3v_3$. Find a_1 , a_2 and a_3 . Find the value of v_0 if
 - i) R₄ is shorted.
 - ii) R₄ is removed.
 - iii) R₁ is shorted.

• Op-amp circuit analysis:

9. For the instrumentation amplifier shown in the figure 6 below, verify that $v_0 = (1+R_2/R_1+2R_2/R)(v_2-v_1)$.

Figure 6

Figure 7

11. Compared with the classical triple op-amp, below in figure 8 uses fewer resistances. The wiper is nominally positioned halfway to maximize the CMRR. Show that $v_0 = (1+2R_2/R_1)(v_2-v_1)$.

12. Show that $v_0 = 2(1+R/R_G) (v_2-v_1)$ in figure 9.

- 13. The circuit in figure 10 can be used to control the input resistance of the inverting amplifier based on OA_1 .
 - a) Show that $R_i = R_1/(1 R_1/R_3)$.
 - b) Specify resistances suitable for achieving A = -10 V/V with $R_i = \infty$.

Figure 10

14. In the series-series circuit in figure 11, $A = 10^4 V/V$, $R_1=1 K\Omega$, $R_2=2 K\Omega$ and $R_3=3 K\Omega$. Find a expression for $I_0 = A_g V_I - V_L/R_0$. What is the value of A_g and R_0 .

[Ans. $A_g = 2 \times 10^{-3}$, $R_0 = 5 \times 10^{6}$]

Figure 11

- 15. Assuming the op-amp of figure 12 has $r_d = \infty$, $A = 10^3 V/V$ and $r_0 = 0$, and all resistance are identical.
 - a) Find A_{ideal} and gain error GE.
 - b) Find A_{min} for GE \leq 0.1%. [Ans. a) $A_{ideal} = -8 V/V$, GE = 1.28%, b) $A_{min} = 13000 V/V$]

Figure 12

16. The circuit in figure 13 yields $I_0 = AV_I - (1/R_0)V_L$. Find the expression for A and R_0 , as well as the condition among its resistances that yields $R_0 = \infty$.

17. Show that the linearized bridge circuit of figure 14 yields $V_0 = R_2 V_{REF} \delta/R_1$.

• <u>Phase-lead/Phase-lag circuit:</u>

18. Determine the phase angle and the time delay for the circuit shown in the figure 15 for a frequency of 2 kHz. Given: R_1 = 20 k Ω , R= 39 k Ω , R_f= R_1 and C= 1nF.

[Ans. ϕ = 52.2°, τ_d = 72.5 µs]

• <u>Slew rate limitations:</u>

- 19. An op-amp used as an inverting amplifier with a gain of 50. The voltage gain vs. frequency curve has a flat gain up to 20 kHz and SR=0.5 V/ μ S. What maximum peak-to-peak input signal can be applied without distorting the output? [Ans. 3.98 V]
- 20. A square wave of peak-to-peak amplitude of 500 mV has to be amplified to a peak-to-peak amplitude of 3 V with a rise time of 4 μ S or less. Is an op-amp with slew rate of 0.5 V/ μ S sufficient? [Ans. SR = 0.6 V/ μ S]
- 21. a) An op-amp has a slew rate of 2 V/μS. What is the maximum frequency of an output sinusoid of peak value 5 V at which distortion sets in due to slew rate limitation?
 b) If a sinusoid of 10 V peak is specified, what is the full power bandwidth?

at is the full power bandwidth?

 $[Ans. a) \, 63.7 \, k\Omega. \, b) \, 31.85 \, k\Omega]$

22. An op-amp has slew rate of 2 V/ μ S. Find the rise time for an output voltage of 10 V amplitude resulting from a rectangular pulse input if the op-amp is slew rate limited. [Ans. 4 μ s]