

Dr. Ashis Maity

Assistant Professor

• Course page:

http://www.facweb.iitkgp.ac.in/~ashismaity/Analog_Signal_Processing_Autumn_2020.html

• References:

- 1. Linear Integrated Circuits by D. Roy Choudhury and Shail B. Jain, New Age International Publisher
- 2. Analog Integrated Circuit Design, (2nd Edition) by Tony Chan Carusone, David Johns, Kenneth Martin, Wiley
- 3. Design with Operational Amplifiers and Analog Integrated Circuits by Sergio Franco (Fourth Edition), McGraw Hill Education
- 4. Analog Filter Design by Rolf Schaumann, Haiqiao Xiao, Mac Van Valkenburg, (Second Indian Edition), Oxford University Press
- 5. Fundamental of Microelectronics by Bezad Razavi, Wiley
- 6. Microelectronic Circuits by Sedra and Smith, (Fifth Edition), Oxford Indian Edition
- 7. CMOS Analog Circuit Design by Allen and Holberg, Oxford Indian Edition
- 8. Design of Analog CMOS Integrated Circuits by Bezad Razavi, Tata McGraw-Hill
- Register yourself in Moodle.

٠

- 1. Try yourself: 30%
 - ✓ Meet the strict deadlines: Every Saturday by 11:59 PM.
 - ✓ Those who have internet connectivity issue, plan to submit early.
- 2. Class Tests on Each Module: 40%
 - ✓ After completion of each module, one class test will be conducted.
- 3. Class Test on Whole Syllabus: 30%
 - ✓ At the end, one class test on whole syllabus will be conducted.

This is a tentative plan. Based on pandemic situation, it may change.

- 1. Course Objective:
 - ✓ Provides a system level (not IC level) perspective of Analog Signal Processing
 - ✓ Study different blocks involved in signal processing except DSP.
 - ✓ After this course, the students will be able to design the whole chain in system level except the processing in digital domain. Such processing are taught in DSP class.
- 2. Course Name: Analog Signal Processing
- 3. What is signal?
- 4. Why analog signal?
- 5. Why do we need processing?

Example of simple system and its basic building blocks

Brief contents of the course

- Module-1: Signal processing using operational amplifier
- Module-2: Analog and switched capacitor filters
- Module-3: Data converters
- Module-4: Oscillator and Phase locked loop
- Module-5: Noise

Dr. Ashis Maity

Assistant Professor

Module-1: Signal processing using operational amplifier

Operational amplifier

- The symbols of a comparator and an op-amp are the same
- Is there any fundamental difference in operation?
 - Op-amp operates in closed loop whereas the comparator operates in open-loop configuration. Exception: Schmitt trigger
 - Their region of operations are different. Op-amp operates in small signal domain whereas the comparator in large signal.

ncy (Hz)

+V_{CC}

-V_{CC}

Vo

 V_{P}

 V_{N}

Operational amplifier

- Properties of an ideal op-amp:
 - Infinite dc (open-)loop gain, $A_v(0) = \infty$
 - Infinite loop bandwidth, $f_{BW} = \infty$
 - Infinite input impedance, R_i=∞
 - Zero output impedance, R_o=0

Ideal op-amp does not exist! Then, what is the significance?

- Different non-idealities in op-amp:
 - Input bias current, Input offset current, Input offset voltage: Mostly affect the DC performance
 - High dc (open-)loop gain, High loop bandwidth, High input impedance, Low output impedance: Mostly affect the AC performance

Non-idealities: Input bias current

- Assumption: Bias currents are equal, i.e., $I_B^{(+)}=I_B^{(-)}$
- How much output offset is getting created?
 - \succ If v_i=0, v_o=+I_B⁽⁻⁾R_f
 - > Example: $R_f=1 M\Omega$, $I_B^{(-)}= 500 nA$, $v_o= 500 mV$
- How to compensate the output offset due to input bias current?

Conceptual development

Try yourself! R_c=R₁||R_F

Hint: R₁ will carry current

Practical implementation

Non-idealities: Input offset current

- Assumption: Bias currents are equal, i.e., $I_B^{(+)} \neq I_B^{(-)}$ and $|I_{OS}| = I_B^{(+)} I_B^{(-)}$
- How much output offset is getting created?
 - \succ v_c=I_B⁽⁺⁾R_c,
 - \succ I₁=v_C/R₁=I_B⁽⁺⁾R_C/R₁
 - \succ **I**₁+**I**_f=**I**_B⁽⁻⁾
 - > Try yourself!
 - $v_0 = R_f I_{OS}$

Non-idealities: Input offset voltage

- Input offset voltage can arise for different reasons:
 - Input pair mismatch
 - Output transistors mismatch
- How to quantify?

Op-amp with input offset voltage with any polarity

- Differential input voltage between inverting and non-inverting terminal.
- ✓ Voltage to be applied to make output zero.
- What is its implication at the output?

Try yourself! Calculate the output voltage due to input offset of an inverting amplifier

Non-inverting amplifier and calculation of output voltage due to input offset

Calculation of total output offset voltage

- Total offset voltage due to input bias current, input offset current and input offset voltage
 - If compensating resistance Rc is not used:

$$V_{OT} = \left(1 + \frac{R_f}{R_1}\right) V_{OS} + R_f I_B$$

- ✓ Assumption: input offset current I_{OS} < input bias current I_B
- \checkmark Depending on the polarity of V_{OS}, the associated term could be positive or negative
- If compensating resistance is used:

$$V_{OT} = \left(1 + \frac{R_f}{R_1}\right) V_{OS} + R_f I_{OS}$$

✓ As $I_{OS} < I_B$, the use of R_C reduces the offset voltage.

Try Yourself: Tutorial Problems

- 1. For the non-inverting amplifier as shown in the figure, $R_1 = 1 \text{ K}\Omega$, $R_f = 10 \text{ K}\Omega$.
 - a) Calculate the maximum output offset voltage due to V_{ios} and I_B . Assume the op-amp has V_{ios} = 10 mV, I_B = 300 nA and I_{os} = 50 nA.
 - **b)** Calculate the value of R_{comp} needed to reduce the effect of I_B .
 - c) Calculate the maximum output offset voltage if R_{comp} as calculated in (b) is connected in the circuit.
- 2. In an inverting amplifier R_1 = 100 K Ω , R_f = 10 M Ω and V_{ios} = 6 mV and I_B = 500 nA.
 - a) Calculate maximum output offset voltage caused by input offset voltage V_{ios} .
 - **b)** Calculate maximum output offset voltage caused by input bias current I_B .

 R_f

Offset Voltage Compensation

When offset compensation
 When no offset null pins are available:
 +V
 -

Offset compensation network in 741 op-amp

External offset compensation network in an inverting amplifier

$$V_{OS} = \pm V \left(\frac{R_4}{R_3 + R_4} \right)$$

 R_{2} R_{3} R_{1} $V_{i} \circ V_{o}$

External offset compensation network in a non-inverting amplifier

$$V_{OS} = \pm V \left(\frac{R_4}{R_4 + R_3} \right)$$

✓ $R_4 << R_3$ ✓ Example: $R_4=100 \Omega$, $R_3=100 k\Omega$, V=15 V, then -15 mV ≤V_{os} ≤ +15 mV

Thermal Drift

- 1. I_B , I_{OS} , V_{OS} are not constant for a given op-amp. Rather, they can vary:
 - a) Over temperature
 - b) Over supply voltage
 - c) Over time
- 2. Temperature causes most serious issues.
- 3. Thermal drift is defined as the average rate of change of a particular quantity per unit change in temperature. For examples: $\Delta I_B / \Delta T$ (pA/^oC), $\Delta I_{OS} / \Delta T$ (pA/^oC), $\Delta V_{OS} / \Delta T$ ($\mu V / ^o C$),
- 4. It is not a constant value and usually non-uniform/non-linear over temperature range.
- 5. So, a circuit nulled at 25^oC, may not remained nulled at other temperature.
- 6. Datasheet usually specify the average or maximum thermal drift.

Power Supply Rejection Ratio (PSRR)

- 1. Op-amp output is sensitive to the power supply voltage.
- 2. Power Supply Rejection Ratio (PSRR)=Change in Supply voltage/Change in output voltage.
- 3. PSR=20log₁₀(PSRR)
- 4. Datasheet gives DC PSR as well as AC PSR performance.

Dr. Ashis Maity

Assistant Professor

Dr. Ashis Maity

Assistant Professor

@ Few observation -I If op-amp is uncompensated, external compensation needs to be used first. 2) Once compensated, it gets approximated to either single pole or two pole systems. 3) For \$ 45° phase margin, second pole is placed at unity gain frequency fucify Two pole system 60° phase margin, second pole is placed at 2.2 times of fuciF For 90° phase margin, second pole is placed at >10 times of funt. -> approximated as single For pole system @ How fzabelaffects transient response:for a small signal parameter and it influence only the small signal response. when small signal step AVREF is applied, vo will also change. (AUREF VREF Rise time is time taken from 10% to 90% of final value. 10 fzåb,a= 0.35 Rise time. > Risetime Gain @ Importance of gain-bandwidter product: - (in a compensated op-amp) 1A0 1 \$31B closed loop bandwidth= f3dB,CL Open loop bandwidth = f3dB (or first pole) fadBell Acio Closed loop gain = ACL(0) Open loop gain = A(0) f3dB × A(0) = f3dB, CL × ACL(0) = fuar JUGF Try yourself: 1) An op-amp has a small signal rise time of 0.7 MS. Determine f3dB, CL. 2) 741 op-amp has f3dB = 5H2, A(0) = 200,000. It a closed loop amplifier is developed using 741 op-omp having ACL(0) = 10, findout fordb, CL.

Dr. Ashis Maity

Assistant Professor

Blew rate limitation Sleve mate is a large signal phenomena. what is slew rate of an op-amp :-AVREF Max. note of change of the output sollage. Lets assume, output capacitor Co. - Small signal -> Q = CV.Example:-It max charging/discharging current ist = Co due is ISMA, G= 20 pF dvo = 1%co Slewing mode $SR = \frac{15\mu}{30P} = 0.5 V (\mu S.$ operation @ How slew rate affects in signal processing:-Input signal Vin may have slew rate (or maximum slew rate) 1%0. DVin Vin = UmSincob -> For sinusoidal input Vo = 19 m sin wt -> because of unity gain configuration dlo = 12m @ Cos@t. -> Desired output slew rate Max. rate of change of the O/p occurs when costot = 1. Max slev rate SR max = do max = Vm W. = 2Mf Vm V/S. * Op-amp plew rate SHOULD be higher than max. slew rate at the O/P as desired by I/P signal without creating no distortion. If ft, SR of the op-amp needs to be increased. -> fmax = SR It Vm1, SR of the op-amp needs to be increased.

Shew note requirement also changes based on input signal.

Example :-

Vin @

1) The output of a voltage follower is a triangular waveform, having 6 v peak-to-peak of 2 MH2. What would be the required shew rate of the op-amp to get an undistorted outputz

2) An inverting op-amp has a gain of -50. The gain curve has a flat gain upto 20 kH2. and slew rate SR = 0.5 V/us. What maximum peak-to-peak input signal can be applied without distorting the output? consider a simusoidal input signal.

For sinusoidal 9/P,
$$V_{m} = \frac{5R}{2\pi f_{max}} = \frac{0.5V/\mu s}{2\pi . 20KHz} = 3.98V.$$

Peak-to-peak 0/P voltage = $2\times 3.98V = 7.96V.$
Peak-to-peak i/P voltage = $\frac{7.96}{50} = 159$ mV.

Example:-3) A square wave of peak-to-peak amplitude of 500 mV has to be amplified to a peak-to-peak amplitude of 3V with a rise time of 4 us or less. Is an op-amp with a slew rate of 0.5V/us sufficient? Required slew rate of 0/p signal = d.Vo

Required slew rate of off signal = divo Rise time -> no time taken to rise from 10%. to 90%. of the final 10%. of 10 = 0.3V. 90% of vo = 2.7V. dro = 2.7-0.3 = 2.4V. and de= 4 res. $\frac{dv_0}{dt} = \frac{2 \cdot 4 \, v}{4 \, \mu} = 0 \cdot 6 \, v/\mu s. \, \mathcal{L} \, op-amp \, slew \, rate \, (0.5 \, v/\mu s)$ The slew rate of the op-amp is not sufficient.

Try yourself: An op-amp has slew rate of 2V/MS. Find the rise time for an output voltage of 10V amplitude resulting from a rectangular pulse input considering the op-amp is slew rate limited.

Dr. Ashis Maity

Assistant Professor

Applications of op-amp in signal processing

Inverting configuration

Q Adder/Subtractor: How to perform
$$(v_3 + v_4) - (v_1 + v_2) ?$$
 v_2 we superposition theorem to analyze true ckt.
 v_3 we superposition theorem to analyze true ckt.
4 Assume $v_2 = v_3 = v_4 = 0.$
 v_1 we superposition theorem to analyze true ckt.
4 Assume $v_2 = v_3 = v_4 = 0.$
 v_1 we superposition theorem to analyze true ckt.
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_2 = v_3 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_1 = v_2 = v_4 = 0.$
4 Assume $v_2 = v_3 = v_4 = 0.$
4 Assume $v_3 = v_4 = 0.$
4 Assume $v_4 = v_4 = 0.$
5 Assume $v_4 = v_4 = 0.$
5 Assume $v_4 = v_4 = 0.$
6 Assume $v_4 = v_4 = 0.$
6 Assume $v_4 = v_4 = 0.$
7 Assume $v_4 = (v_3 + v_4) - (v_1 + v_2)$

_

Dr. Ashis Maity

Assistant Professor

_

Dr. Ashis Maity, Electrical Engineering, Indian Institute of Technology Kharagpur

@Logarithimic Amplifier ;-Applications: To compress large dynamic range. Used in spectrum analyzer, multiplier etc. Where Is = emitter saturation current \$ 10"A $I_E = I_S \left[e \frac{W_E}{kT} - I \right]$ * Basic structure :-K = Boltzman Constant Te +VE R 2c ≈ Is [e KT_1] T = Absolute temperature ave/KT-1 $e^{q_V E/kT} = \frac{1}{1s} + 1 \approx \frac{1}{1s} \approx as I_c >> I_s$ 120. $\frac{1}{1} = e$ ヨ or, lu e ave/kT = lutic] NOW, VE = - VO $\mathcal{W}, \quad V \in = \frac{kT}{q} \ln \left[\frac{I_c}{I_s} \right] = \frac{kT}{q} \ln \left[\frac{V_i}{RI_s} \right]$ $\alpha_{r}, V_{0} = -\frac{kT}{q} ln \left[\frac{V_{i}}{V_{Ref}} \right]$ δr , $v_E = \frac{kT}{q} ln \left[\frac{v_i}{v_{Ref}} \right]$ where $v_{Ref} = I_S R$. W, $V_0 = -\frac{kT}{q} \log_10 \left[\frac{V_i}{V_{Ref}}\right] \cdot \frac{1}{0.4343}$ Problem :) Is varries from transistor to transistor. 2) Vo Still depends on temperature T.

* Modified structure :-181 RI V3 R Vo, comp a2 RI \$ R2 V2 RTC. VDC $V_1 = -\frac{kT}{q} ln \left[\frac{V_i}{I_s R} \right]$ and $V_2 = -\frac{kT}{q} ln \frac{V_{DC}}{I_s R}$ $-(V_1 - V_2) = V_3 = V_2 - V_1 = -\frac{KT}{q} I_n \left[\frac{V_{DC}}{I_{SR}}\right] + \frac{KT}{q} I_n \left[\frac{V_1}{I_{SR}}\right] = \frac{KT}{q} I_n \left[\frac{V_1}{V_{DC}}\right]$ The variation of Is has been eliminated in V3. It is still dependent on T. $V_{0, comp} = \left(1 + \frac{R_2}{R_T}\right) \frac{KT}{q} ln \left[\frac{V_i}{V_{DC}}\right]$ where R_{TC} is temperature-sensitive resistance with a positive co-efficient. RTC is also known as sensistor. · Requires four op-amps -> expensive.

Dr. Ashis Maity

Assistant Professor

Dr. Ashis Maity

Assistant Professor

Tutonial problems:-

÷

$$\begin{array}{c} \text{If the wiper posiblened at the middle, show that:}\\ V^{g}\sigma = \left(1 + \frac{2R_{2}}{R_{1}}\right)\left(V_{2}-V_{1}\right)\\ V^{g}\sigma = \frac{V_{1}}{R_{2}}\cdot\left(R_{2} + \frac{R_{1}}{2}\right) = V_{1}\left(1 + \frac{R_{1}}{2R_{2}}\right).\\ \end{array}$$

$$\begin{array}{c} \frac{V\sigma-V_{2}}{R_{2}} = \frac{V_{2}-V_{3}}{R_{1}/2}\\ \frac{V_{0}-V_{2}}{R_{2}} = \frac{2\left(V_{2}-V_{3}\right)}{R_{1}}\\ \end{array}$$

$$\begin{array}{c} \sigma_{1}, R_{1}V\sigma-R_{1}V_{2} = 2R_{2}V_{2} - 2R_{2}V_{3}\\ \sigma_{1}, R_{1}V\sigma = V_{2}\left[2R_{2}+R_{1}\right] - 2R_{2}U_{1}\left[1 + \frac{R_{1}}{2R_{2}}\right].\\ \sigma_{1}, R_{1}V\sigma = V_{2}\left[R_{1}+2R_{2}\right] - v_{1}\left[2R_{2}+R_{1}\right].\\ \end{array}$$

$$\begin{array}{c} \sigma_{1}, R_{1}V\sigma = V_{2}\left[R_{1}+2R_{2}\right] - v_{1}\left[2R_{2}+R_{1}\right].\\ \end{array}$$

